Problem 1.38

Two ropes in a vertical plane exert equal-magnitude forces on a hanging weight but pull with an angle of 86.0° between them. What pull does each one exert if their resultant pull is 372 N directly upward?

Solution

A schematic of the hanging weight is shown below.

Decompose these tension vectors into components along the x - and y-axes. Because the resultant points directly upward and the tensions are equal, the angles from the vertical are 43°.

The corresponding triangles with the magnitudes are drawn as well. Use trigonometry to determine the vertical components.

$$
\cos 43^{\circ}=\frac{\left|T_{1 y}\right|}{T} \rightarrow\left|T_{1 y}\right|=T \cos 43^{\circ} \quad \cos 43^{\circ}=\frac{\left|T_{2 y}\right|}{T} \quad \rightarrow \quad\left|T_{2 y}\right|=T \cos 43^{\circ}
$$

Because $\mathbf{T}_{1 y}$ and $\mathbf{T}_{2 y}$ point in the positive y-direction, no minus signs are needed.

$$
\begin{aligned}
& T_{1 y}=T \cos 43^{\circ} \\
& T_{2 y}=T \cos 43^{\circ}
\end{aligned}
$$

The sum of these vertical components must add to 372 N .

$$
\begin{gathered}
T_{1 y}+T_{2 y}=372 \mathrm{~N} \\
T \cos 43^{\circ}+T \cos 43^{\circ}=372 \mathrm{~N}
\end{gathered}
$$

Solve for T.

$$
\begin{gathered}
2 T \cos 43^{\circ}=372 \mathrm{~N} \\
T=\frac{186 \mathrm{~N}}{\cos 43^{\circ}} \approx 254 \mathrm{~N}
\end{gathered}
$$

Each rope exerts a pull of roughly 254 newtons.

